

EUF

EUFAR:

Access to airborne research facilities in environmental and geo-sciences.

Workshop: Towards harmonisation of polar infrastructure access, Plovdiv, 1 Aug 2019

Philip R.A. Brown (Met Office, UK), EUFAR Executive Board Chair

What is EUFAR?

- LEUFAR is the European Facility for Airborne Research in Environmental and Geosciences
- EUFAR links the operators of research aircraft and their instrumentation, scientific users and funding agencies
- LEUFAR aims to enhance collaboration, spread best practice, promote efficiency and enhance user access to both the facilities and their data
- LEUFAR website provides a central information portal

Keywords:

Environmental sciences Geo sciences Airborne research Atmospheric measurements Remote sensing Multi-domain

www.eufar.net bureau@eufar.net

What for?

- Airborne observational research contributes incremental developments in the scientific understanding of Earth-System processes.
- These developments proceed in parallel with the capability to observe these processes on a global scale from space and to model them in operational Numerical Weather Prediction (NWP), climate and Earth-System models.
- The fields of science impacted by an airborne research observing capability are very broad, and span the atmosphere, ocean, land surface and biological systems.
- Airborne observations continue to be required to support Earth-System model development and space-based observing programs such as COPERNICUS.

An example of the application of EUFAR airborne measurements:

Two FP7-EUFAR-funded research flight campaigns clustered with the AEROCLO-sA umbrella flight campaign took place in Jamibia in Aug and Sept 2017 (EriSMA and ALLDUST-SA) to investigate sources and emissions of dust in Namibia

Which activities?

EUFAR's timeline

	2000-2004	2004-2008	3	2008-20	013	2014-2018
	EUFAR	EUFAR		EUFAR		EUFAR2
	FP5 Infrastructure Cooperation Network	FP6 Integrated Infrastructure Initiative		FP7 Integrated Infrastructure Initiative		FP7 Integrated Infrastructure Initiative
	€640k	€5M		€8M		€6M
	9 partners	22 partners		34 partners		24 partners
2000			2007-2011		[`	
€20M+ EU funding over 17 years			COPAL			January 2018
			FP7 Preparatory Phase Study			EUFAR AISBL
						Constitution of the
			€1M			EUFAR AISBL
		13 partners				

EUFAR capabilities

Atmospheric in-situ observation

- Atmospheric composition (trace gases and aerosols)
- Cloud and precipitation microphysics
- Radiative transfer (visible to sub-millimetre)"
- Atmospheric dynamics and thermodynamics

Airborne imaging of the Earth's surface

- Hyperspectral imaging (Vis, Near-IR, Thermal-IR)
- Lidar terrain-scanning
- Synthetic aperture radar
- Soil / Vegetation / Water / Minerals

Categories

Jet / Large / Medium / Small aircraft

EUFAR members do not currently operate specialised polar aircraft

Troposphere F-HMTD ATR: ATR42-520

Arter SAFIRE Troposphere F-BLER

Troposphere D-EAFU Cessna Aircraft Company, T207A Piper Aircraft, PA25-250 Artec Turbo Skywagon

C 208 - CrechGlob-Troposphere Cesana Aircraft Company, C-208 B D-FOLR

Case - DER Geutaches Zentrum für Luft- und Recentative a V. (DCR) Land/Sea surface properties, Cesana Aircraft Company, C-208 B Grand Carevan

Land/Sea surface properties,

Dornier Flugzeugwerke, Do 228

Troposphere

D-CODE

101

D0228-212-DLR Land/Sea surface properties, Troposphere D-CEFU Dornier Flugzeugwerke, Do 228

FROM - DLH

Dassault Aviation, Mystere / Falcon

Land/Sea surface properties

Troposphere

D-CMET

305.4

Troposphere

Grand Caravan

OK-C20

FADD - SAFIRE

Tronnahara F.ORTH Dassault Aviation, Mystere / Falcon 20 GF

GBSS HALD - DLH Land/Sea surface properties. Troposphere, UTLS (Upper Troposphere, Lower Stratosphere) D-ADLR Guithtream Aerospace, GS50

Troposphere STOLE. Hawker Beechcraft, King Air C90 GTs.

212

EUFAR Access

- Transnational Access
 - With EU funding EUFAR was able to support fullyfunded flight hours given to user groups without access to the necessary facilities in their own country of working
 - Such funding is not currently available

Open Access

- EUFAR still seeks to broaden access to the facilities operated by its Members and is working towards the development of Open Access principles
- The objective is to ensure the optimum usage of the existing fleet of aircraft

TA access process

- Calls for Proposals published via EUFAR website
- Proposals peer-reviewed must meet a quality threshold
- Selection panel selection in line with Call requirements and available funding
- Eligibility criteria
 - open to users who don't have access to the required facilities through their national research funding

TA Strengths and Limitations

Strengths

- Provides essentially cost-free access to users (plus limited travel support)
- Enables clustering of TA activities with larger campaigns
 - possibility to participate in remote locations incl. polar regions
 - By this means, EUFAR has supported TA campaigns in Antarctica, Namibia, Cape Verde
- Broad range of facilities available

TA Strengths and Limitations

Limitations

- High costs of aircraft activity (typically €5,000-25,000 per flight hour)
- Size of awards usually restricted to ~10 flight-hours or 2 observing flights by available funding
- Hence scientific scope of TA projects necessarily limited
 - but can be enhanced by appropriate clustering with nationally-supported activities
 - clustering typically allows TA user to participate in a longerduration observing campaign – better chance to obtain optimum observing conditions
- Problems of attracting peer-reviewers

EUF R Experience in harmonizing access requirements

- Timescale between submission of application to proposed observing work should ideally be 18-24 months
- Research aircraft operations typically planned 1-2 years ahead – TA projects have to fit in with this schedule
- Encourage multi-disciplinary approach combining aircraft and other RIs

Best practice recommendations

- Calls for Proposals linked to broad strategic objectives to enhance science impact
- Obtain additional external funding to support TA!
 - Any additional flying beyond what is supported by national funding will raise additional costs
 - Fuel, airport fees, T&S for aircraft crews
- Where access time is limited by funding, encourage clustering with existing activities
- Where possible, link to existing peer-review systems

Contact details

Phil Brown, Chair of the Executive Board Met Office E-mail: <u>phil.brown@metoffice.gov.uk</u>

Élisabeth Gérard, Executive Secretary Météo-France E-mail: <u>bureau@eufar.net</u>